

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

title: Contributing
has_children: false
nav_order: 10
nav_exclude: false

Contributing Guide

	Feature Requests

	Bug Reports

	Pull Requests

	3-Tiered Design Pattern

	Solution Modules or Sample Modules (Layer 1)

	Catalog Modules (Layer 2)

	Component Modules (Layer 3)

	Coding Standards

	Common Input and Output Variables

	Show Usage in Samples

	Adhere to Formatting Standards

	Create Self-documenting Modules

	Follow Purpose-Driven Design Patterns

Feature Requests

Feature Requests for DataOps projects are tracked as issues and are organized into a backlog here: docs.dataops.tk/backlog [https://docs.dataops.tk/backlog]

Bug Reports

Bug Reports are tracked as issues in this repo. To create a bug report, please log a new Issue.

Pull Requests

Pull Requests (PRs) are the method used for intaking new code contributions

Guide to Creating a Pull Request:

	Start by creating a personal fork of this repo.

	Create a new branch from ‘master’ and commit your changes.

	Create a new Pull Request to this repo (not your personal) which references your new branch.

	The maintainers will reply to your PR, generally within 3 business days, and may ask questions or suggest changes.

	After all outstanding reviews have passed, your code will be merged by the maintainers into the master branch, which is essentially “production”.

3-Tiered Design Pattern

When making changes to the terraform modules, please observe the following 3-tiered design pattern from targeted and business-focused (layer 1) to increasingly technical and generic (layer 3).

Solution Modules or Sample Modules (Layer 1)

Solution modules should be configurable as simply as possible to align with the stated business requirements of the module.

Catalog Modules (Layer 2)

Catalog Modules (Layer 2) should combine modules from Layer 3 in a method targeted to specific functional or business requirements.

Component Modules (Layer 3)

Component Modules (Layer 3) define the technical solutions as mapped to individual cloud product offerings (EC2, EC2, Azure Functions, etc.), meeting a technical requirement from one or more catalog modules which reference them.

Coding Standards

Submitted PRs should meet the following code standards before being merged into master:

Common Input and Output Variables

In addition to custom variables, each AWS catalog and component module should support the following standard input and output variables:

Direction	Variable Name	Required	Description
:——-:	—————	:——:	——-
input	name_prefix	Y	Unless otherwise stated, this will be a concatenation like {project_shortname}- and will be used as a unique name prefix for resources created within the module.
input	environment	N	An object or map with values for vpc_id, aws_region, public_subnets and private_subnets, generally passed from the aws/catalog/environment module.
input	resource_tags	N	Allows designer to add default tags to child modules. These should then be propagated to all child resources which support tagging.
output	summary	Y	A human-readable summary of the resources which were deployed, especially unique resource IDs and connection strings (if applicable).

Show Usage in Samples

	As a rule, each component and category module should be referenced by at least one solution module in the samples folder, and the sample should demonstrate how to utilize the core functionality.

	In addition to providing an easy on-ramp for new users to learn how to use your module, your sample module is also an entrypoint for the CI/CD pipeline to perform automated tests.

	If your sample code ever stops working, the automated tests will catch this, giving us a means to catch and fix the breakages before they can impact users.

Adhere to Formatting Standards

	Terraform makes it very easy way to auto-format modules, which in turn ensures a consistent experience when reviewing code across multiple authors.

	If you use VS Code, the defaults specified in settings.json should automatically apply formatting on each file save.

	Formatting is checked automatically after each commit by the CI/CD pipeline.

	If you receive failures related to Terraform formatting, simply run terraform fmt -recursive from the root of the repo. This command will auto format the entire repo and then you can simply commit the resulting changes.

Create Self-documenting Modules

	In order for components to be effectively used by a broad audience, each module must be self-documenting and should be included in the Catalog auto-document tool.

	Make sure each input and output variable has it’s description field set.

	Make sure each module has a main.tf file and that the file contains a header comment with a paragraph description of the basic module functions. See components/aws/secrets-manager/main.tf for a sample.

	All input variables should be stored in variables.tf and all output variables should be stored in outputs.tf.

	After the above are met, update the project docs by navigating to the docs directory and running build.py (more details here). This command will update all module README files as well as catalog/README.md and components/README.md.

Follow Purpose-Driven Design Patterns

Modules should be written as simply as possible, but no simpler.

	There is no expectation that modules should be fully generic or meet every use case.

	Opinionated and purpose-driven approaches are preferred versus trying to build modules that are one-size-fits-all.

Preventing Security Leaks

Please read the Secrets Guide for instructions on how to properly manage secrets
and prevent accidentally compromising sensitive information.

nav_exclude: true

Azure Catalog Modules

Catalog modules meet some specific functional need and are composed of lower-level component modules (components/azure).

Input and Output Variables

Each Azure catalog module supports the following inputs:

Direction	Variable Name	Required	Description
———	—————-	:——:	——-
input	name_prefix	Y	Unless otherwise stated, this will be a concatenation like {project_shortname}- and will be used as a unique name prefix for resources created within the module.
input	resource_group	Y	The resource group to use for newly created resources, which also determines the Azure region.
input	resource_tags	N	Allows designer to add default tags to child modules. These should then be propagated to all child resources which support tagging.
output	summary	Y	A human-readable summary of the resources which were deployed, especially unique resource IDs and connection strings (if applicable).

Azure Component Modules

These are technical component modules to be composed into specific use cases as defined by higher-level Catalog modules (catalog/azure).

Input and Output Variables

Each Azure component module supports the following inputs:

Direction	Variable Name	Required	Description
———	—————-	:——:	——-
input	name_prefix	Y	Unless otherwise stated, this will be a concatenation like {project_shortname}- and will be used as a unique name prefix for resources created within the module.
input	resource_group	Y	The resource group to use for newly created resources, which also determines the Azure region.
input	resource_tags	N	Allows designer to add default tags to child modules. These should then be propagated to all child resources which support tagging.
output	summary	Y	A human-readable summary of the resources which were deployed, especially unique resource IDs and connection strings (if applicable).

nav_exclude: true

Securely Managing Secrets

Preventing Security Leaks

Proper storage of secrets

This repo has a .gitignore rule to automatically exclude files that are contained in any
folder titled .secrets. With the exception of *.template and README.md files, all
other files in these folders will be automatically excluded from git.

	DO NOT put secrets directly into your code files.

	DO always put secrets into dedicated secrets files which are hidden from git.

	DO migrate project secrets to a proper secrets manager (like AWS Secrets Manager) as
soon as you are able.

	DO always double-check the first time you create a secrets file that it is not planned
for addition into Git. (For instance, VS Code displays git-ignored files with a
greyed-out font.)

Install ‘pre-commit’ git hooks for automatic security leak prevention

Step 1: Install detect-secrets and pre-commit from an admin prompt:

pip install detect-secrets pre-commit

Step 2: Setup your local repo with the required pre-commit hooks:

cd .../dataops-infra

pre-commit install

Step 3: Check for a file called .pre-commit-config.yaml at the root of the repo:

If the file doesn’t yet exist, create the file with the following contents:

repos:
 - repo: https://github.com/yelp/detect-secrets
 rev: v0.14.2
 hooks:
 - id: detect-secrets
 args: ["--baseline", ".secrets.baseline"]
 exclude: .*/tests/.*

That’s it! You’re done (at least for this repo). Repeat steps 2 and 3 for any additional git repositories which you want to protect.

Dealing with false-positives

If you run into false positives, try one of the following 2 options.

Option A:

Add an inline comment to the end of the offending
line(s): # pragma: allowlist secret

Option B:

Rebaseline and audit the results before committing.

Periodically scan and audit any findings

Update and audit your baseline:

detect-secrets scan --update .secrets.baseline
detect-secrets audit .secrets.baseline

nav_exclude: true

Slalom Infrastructure Catalog > Testing

Terraform Validation Testing and Linting

Terraform linting (aka terraform fmt) and terraform validate are executed
automatically in the CI/CD pipeline.

Testing with the Terraform-Compliance Tool

	Install the terraform-compliance tool:

pip install terraform-compliance

	Deploy one of the samples:

cd samples/airflow-on-aws

	Create the Terraform Plan file:

cd samples/airflow-on-aws
terraform plan -out plan.out

	Validate against a saved state file:

cd samples/airflow-on-aws
terraform-compliance -p plan.out -f ..\..\tests\rules

nav_exclude: true
nav_order: 11

Troubleshooting Guide

Terraform output errors during destroy

	Note: It is possible for environments to become stuck due to failures in printing output variables, for instance if SSH keys are accidentally deleted or rotated incorrectly. To ignore errors from outputs which cannot be parsed, you can temporarily set the environment variable: TF_WARN_OUTPUT_ERRORS=1 and then re-run terraform apply or terrafom destroy. This will ignore all output errors instead of failing the process (do not use unless needed).

nav_exclude: true

Slalom DataOps Infrastructure Catalog > Website Testing

Instructions to test the GitHub Pages website generation.

Installation

	Install Ruby: choco install ruby

	Install jekyll Gem: gem install jekyll -v 3.9.0 (or whatever version is listed here [https://pages.github.com/versions/])

	Install github-pages Gem: gem install github-pages

Testing

	Run bundle update to refresh and update package versions.

	Run bundle exec jekyll serve --incremental --watch to test the site locally.

	Most types of content changes will be hot-refreshed, automatically updated
when they are changed.

List of Important Config Files

	/_config.yml - The base configuration for the Jekyll website.

	/_includes/ - Folder to override theme files.

	404.html - The page template to use for 404 errors (page not found).

	about.md - The content of the about page.

	Gemfile - Ruby project configuration (used by Jekyll).

	Gemfile.lock - Ruby version lock file, used to prevent version conflicts.

title: Getting Started
has_children: false
nav_exclude: false
has_toc: true
nav_order: 2

QuickStart Guides

These guides are intended to get you up and running as quickly as possible.

	Running the Samples - Clone the repo and get up and running
with the sample projects.

	New Projects - Begin a new fresh project that references
Infrastructure Catalog modules.

	Existing Terraform Projects - Extend your
existing Terraform infrastructure using the Slalom Infrastructure Catalog.
(Intended for experienced Terraform users.)

parent: Getting Started
title: Integrating with Existing Terraform Projects
has_children: false
nav_exclude: false
nav_order: 3

Integrating with Existing Terraform Projects

This guide walks through the process of integrating the Infrastructure Catalog with
existing terraform environments.

(Coming Soon!)

parent: Getting Started
title: New Project QuickStart
has_children: false
nav_exclude: false
nav_order: 2

New Project QuickStart Guide

This guide walks through the process of creating a new project.

(Coming Soon!)

parent: Getting Started
title: Running the Samples
has_children: false
nav_exclude: false
nav_order: 1

QuickStart: Deploying Infrastructure Catalog Samples

This guide is targeted towards developers, contributors, or anyone who wants to test
out the various modules which available. We will start with the
Data Lake Sample [https://github.com/slalom-ggp/dataops-infra/tree/main/samples/data-lake-on-aws] on AWS, and from there then you can deploy any additional examples
using the same procedure.

Setup workstation and clone the repo

	Start by installing the required DataOps tools.

	Go to https://docs.dataops.tk/setup.

	Follow the provided installation steps, including at minimum:
Git, Terraform, Docker, Visual Studio Code

	Clone the dataops-infra repo.

Configure credentials and deploy the sample

	Create a new file in the .secrets folder called aws-credentials and enter your AWS
credentials.

	For reference, refer to the sample file: .secrets/aws-credentials.template.

	In left-hand navigation pane in VS Code, expand the samples folder select the
data-lake-on-aws sample.

	Right-click the desired sample folder (data-lake-on-aws in this example) and select
“Open in Integrated Terminal”.

	Run terraform init to download needed providers and then run terraform apply to
deploy the infrastructure.

Tear down the infrastructure

	Once again, in the left-hand navigation pane in VS Code, expand the samples folder
select the data-lake-on-aws sample.

	Right-click the desired sample folder (data-lake-on-aws in this example) and select
“Open in Integrated Terminal”.

	Run terraform destroy to tear down the environment.

	When prompted, type ‘y’ to confirm.

Running the ‘kitchen sink’ sample

Once you have successfully deployed the data lake sample, you are ready to deploy more
advanced infrastructures. This section will walk you through deploying the
Kitchen Sink Sample [https://github.com/slalom-ggp/dataops-infra/tree/main/samples/kitchen-sink-on-aws]
on AWS.

Before you go further:

Some of these components require python, and now’s a good time to pause and double
check that python and it’s installer “pip” are both working as expected. In any command line try
running pip3 --version. If that doesn’t work, you can try pip --version. If that doesn’t work,
please revisit the datapops quickstart [https://docs.dataops.tk/setup] and follow the
instructions to re-install python (after first uninstalling any versions you already have
installed). Similarly, you can double check that terraform is installed by running
terraform --version on any command line prompt.

And one more thing…. remember that you are deploying real infrastructure into the cloud,
an those resources cost real money. Be sure to run terraform destroy to cleanup your AWS
environment after running each deployment. Alternatively, you can also use an environment like
LinuxAcademy Playground [https://playground.linuxacademy.com] which automically cleans up your
resources after a specified time limit.

Once you are ready to go:

	In left-hand navigation pane in VS Code, expand the samples folder select the
kitcken-sink-on-aws sample.

	Right-click the kitcken-sink-on-aws sample folder and select
“Open in Integrated Terminal”.

	Run terraform init to download needed providers and then run terraform apply to
deploy the infrastructure.

	If needed, perform any necessary debugging until you succeed in running terraform apply
without errors. At any time, especially if you get stuck on a particular module, you may still be
able to run terraform output, which will give you an overview of the components which have
deployed successfully.

	Your deployed infrastructure should look similar to the below:
[image: ../_images/diagram.png]Diagram [https://github.com/slalom-ggp/dataops-infra/raw/main/samples/kitchen-sink-on-aws/diagram.png]

	Important: Once you are done, run terraform destroy to destroy the infrastructure which
you have deployed.

Browsing the deployed infrastructure

Navigate to the samples directory [https://github.com/slalom-ggp/dataops-infra/tree/main/samples]
and select from one of the samples. Each sample folder has a README file which explains
the functionality and links to readme for each of the related catalog components.

 _static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/plus.png

_images/diagram.png
Admin End Users

Ww 24
Terraform

Admin User IAC End Users
AWS

WPC

Public Stbrets
v

.
MysaL:

Elastic Load Redshift Airflow Server MySQL
Balancer Cluster (ECS Fargate) (RDS)

5

VPC Firewall Rules

Route Tables

Private Supnets

+
At

Tableau Server
(EC2)

¢
¢
(¢
Postgres NAT
(RDS) Gateway

T,

Singer.io External

Extract/Loads <« Data Source

————————F (ECSFargate)

53 Data Lake

E &

Data Bucket Event Triggers
(AWS Eventbridge)

Logging Bucket Metadata Bucket

FRNE Y

File Listener
(Lambda Python)

<

SFTP
Transfer Service

Spark Transforms
(Glue)

'Kitchen Sink’ Sample on AWS

AWS Secrets Cloudwatch Logs
Manager

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/up-pressed.png

_static/up.png

