

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

Contributing Guide

	Feature Requests

	Bug Reports

	Pull Requests

	3-Tiered Design Pattern

	Solution Modules or Sample Modules (Layer 1)

	Catalog Modules (Layer 2)

	Component Modules (Layer 3)

	Coding Standards

	Common Input and Output Variables

	Show Usage in Samples

	Adhere to Formatting Standards

	Create Self-documenting Modules

	Follow Purpose-Driven Design Patterns

Feature Requests

Feature Requests for DataOps projects are tracked as issues and are organized into a backlog here: docs.dataops.tk/backlog [https://docs.dataops.tk/backlog]

Bug Reports

Bug Reports are tracked as issues in this repo. To create a bug report, please log a new Issue.

Pull Requests

Pull Requests (PRs) are the method used for intaking new code contributions

Guide to Creating a Pull Request:

	Start by creating a personal fork of this repo.

	Create a new branch from ‘master’ and commit your changes.

	Create a new Pull Request to this repo (not your personal) which references your new branch.

	The maintainers will reply to your PR, generally within 3 business days, and may ask questions or suggest changes.

	After all outstanding reviews have passed, your code will be merged by the maintainers into the master branch, which is essentially “production”.

3-Tiered Design Pattern

When making changes to the terraform modules, please observe the following 3-tiered design pattern from targeted and business-focused (layer 1) to increasingly technical and generic (layer 3).

Solution Modules or Sample Modules (Layer 1)

Solution modules should be configurable as simply as possible to align with the stated business requirements of the module.

Catalog Modules (Layer 2)

Catalog Modules (Layer 2) should combine modules from Layer 3 in a method targeted to specific functional or business requirements.

Component Modules (Layer 3)

Component Modules (Layer 3) define the technical solutions as mapped to individual cloud product offerings (EC2, EC2, Azure Functions, etc.), meeting a technical requirement from one or more catalog modules which reference them.

Coding Standards

Submitted PRs should meet the following code standards before being merged into master:

Common Input and Output Variables

In addition to custom variables, each AWS catalog and component module should support the following standard input and output variables:

Direction	Variable Name	Required	Description
:——-:	—————	:——:	——-
input	name_prefix	Y	Unless otherwise stated, this will be a concatenation like {project_shortname}- and will be used as a unique name prefix for resources created within the module.
input	environment	N	An object or map with values for vpc_id, aws_region, public_subnets and private_subnets, generally passed from the aws/catalog/environment module.
input	resource_tags	N	Allows designer to add default tags to child modules. These should then be propagated to all child resources which support tagging.
output	summary	Y	A human-readable summary of the resources which were deployed, especially unique resource IDs and connection strings (if applicable).

Show Usage in Samples

	As a rule, each component and category module should be referenced by at least one solution module in the samples folder, and the sample should demonstrate how to utilize the core functionality.

	In addition to providing an easy on-ramp for new users to learn how to use your module, your sample module is also an entrypoint for the CI/CD pipeline to perform automated tests.

	If your sample code ever stops working, the automated tests will catch this, giving us a means to catch and fix the breakages before they can impact users.

Adhere to Formatting Standards

	Terraform makes it very easy way to auto-format modules, which in turn ensures a consistent experience when reviewing code across multiple authors.

	If you use VS Code, the defaults specified in settings.json should automatically apply formatting on each file save.

	Formatting is checked automatically after each commit by the CI/CD pipeline.

	If you receive failures related to Terraform formatting, simply run terraform fmt -recursive from the root of the repo. This command will auto format the entire repo and then you can simply commit the resulting changes.

Create Self-documenting Modules

	In order for components to be effectively used by a broad audience, each module must be self-documenting and should be included in the Catalog auto-document tool.

	Make sure each input and output variable has it’s description field set.

	Make sure each module has a main.tf file and that the file contains a header comment with a paragraph description of the basic module functions. See components/aws/secrets-manager/main.tf for a sample.

	All input variables should be stored in variables.tf and all output variables should be stored in outputs.tf.

	After the above are met, update the project docs by navigating to the docs directory and running build.py (more details here). This command will update all module README files as well as catalog/README.md and components/README.md.

Follow Purpose-Driven Design Patterns

Modules should be written as simply as possible, but no simpler.

	There is no expectation that modules should be fully generic or meet every use case.

	Opinionated and purpose-driven approaches are preferred versus trying to build modules that are one-size-fits-all.

Troubleshooting Guide

Terraform output errors during destroy

	Note: It is possible for environments to become stuck due to failures in printing output variables, for instance if SSH keys are accidentally deleted or rotated incorrectly. To ignore errors from outputs which cannot be parsed, you can temporarily set the environment variable: TF_WARN_OUTPUT_ERRORS=1 and then re-run terraform apply or terrafom destroy. This will ignore all output errors instead of failing the process (do not use unless needed).

 nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/file.png

_static/ajax-loader.gif

_static/minus.png

_static/down.png

_static/up-pressed.png

_static/up.png

_static/plus.png

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

